Catalysed 1,2- vs. 1,4-Addition of 3,4-Dichlorocyclobut-3-ene-1,2-dione with Unsaturated Organosilanes

Masatomi Ohno, Yoshihiko Yamamoto and Shoji Eguchi*

Institute of Applied Organic Chemistry, Faculty of Engineering, Nagoya University, Chikusa, Nagoya 464, Japan

3,4-Dichlorocyclobut-3-ene-1,2-dione (squaric acid chloride) reacts with allylsilanes and silyl enol ethers in the presence of $TiCl_4$ at C-1 and/or C-4, depending on the substitution pattern of the organosilane.

Squaric acid 1 has long been known as a small ring system having unique characteristics the derivatives of which have wide application.^{1,2} Recently they have attracted attention in synthesis as a C-4 building block.^{3,4} Derivatization of 1 has been achieved under both nucleophilic and electrophilic conditions; thus, the ester 2 was shown to react with RMgX via 1,4-

addition and with RLi via 1,2-addition,⁵ and the acid chloride 3 with an enamine via 1,4-addition.⁶ Friedel–Crafts conditions were employed for the reaction 3 with aromatic compounds.⁷ We now report the novel Lewis acid-catalysed addition of 3 with allylsilanes and silyl enol ethers 4,⁸ in which a remarkable substituent effect was observed.

Typically, the acid chloride 3 reacted with allyltrimethylsilane 4a in the presence of TiCl₄ at -78 °C in dichloromethane within 5 min. Work-up and separation by silica gel column chromatography afforded the product. Primarily the mass spectral and elemental analyses supported a simple 1:1 adduct which retained two chlorine atoms. The IR spectrum showed hydroxy and carbonyl absorption at 3319 and 1784 cm⁻¹ respectively and the ¹H NMR spectrum indicated the presence of an allyl group as an ABC pattern at δ 5.27–5.98; the ¹³C NMR spectrum indicated a ring structure containing one sp³ (δ 93.2) and three sp² carbons (δ 187.7, 170.7 and 133.7). These results allowed the assignment of structure 5a, 2-allyl-3,3dichloro-2-hydroxycyclobut-3-enone, to the compound. Similarly, methallyl- and crotyl-silanes 4b,c gave the corresponding 1,2-addition products 5b.c. In contrast, prenylsilane 4d underwent 1,4-addition followed by dechlorosilylation, to give 3-allyl-4-chlorocyclobut-3-ene-1,2-dione 6d as the predominant product. The structure of the latter was characterized by the following spectral data: a mass measurement showed the presence of only one chlorine atom whilst IR and ¹³C NMR spectroscopy showed the absence of hydroxy absorption but the presence of two different carbonyl groups (1779 and 1807 cm⁻¹) and four sp² carbons (δ 195.6, 193.1, 179.3 and 168.9) on the ring. The observed trend in reactivity seemed to be a result of double γ -substitution in the allylsilane and this was confirmed by reactions with a series of silvl enol ethers 4e-g. These reactions were complete within 1 min, and gave phenacylsubstituted products 5e-g and 6g. With an increase in the number of methyl substituents on the enol ether (*i.e.*, 0 to 2), the addition manner changed from 1,2 to 1,4. In the bulky silyl enol ethers 4h-i both 1,2- and 1,4-addition products were obtained. These facts suggest that bulkiness around the carbon γ to a silyl group altered the attacking site on the ring. The results obtained are summarized in Table 1. The reaction temperature was also found to have an effect on those reactions; thus, when the reaction of 3 with 4e was carried out at -95 °C for 5 min the 1,4-adduct 6e was obtained in 32% yield.

In conclusion, carbon-carbon bond formation on the cyclobutendione ring was achieved by $TiCl_4$ -catalysed reaction of 3 with unsaturated organosilanes 4, in which the substitution pattern and reaction temperature influenced 1,2- vs. 1,4-addition reactivity.

Experimental

Typical Procedure for the Addition of the Acid Chloride 3 with Unsaturated Organosilanes: 2,3-Dichloro-4-hydroxy-4-prop-2-

Table 1 Addition of 3 with unsaturated organosilanes 4

Silane	X	R ¹	R ²	R ³	Product (% yield)"
4 a	CH,	Н	Н	н	5a (54)
4b	CH ₂	Me	Н	Н	5b (50)
4c	CH ₂	Н	Me	Н	5c (26)
4d	CH ₂	н	Me	Me	5d)6d(8/68)
4e	0	Ph	Н	Н	5e(52)
4f	0	Ph	Me	Н	5f(38)
4g	Ō	Ph	Me	Me	5g/6g(7/82)
4h	Ō	Ad ^b	Н	н	5h/6h(32/40)
4i	0	-	\sum	Н	5i/6i (73/26)

^a Products were fully characterized by IR, ¹H and ¹³C NMR spectroscopy, and mass spectrometry. Isolated yields were given. ^b 1-Adamantyl.

envlcvclobut-2-enone 5a.—To a solution of the acid chloride 3 (75 mg, 0.5 mmol) and allyltrimethylsilane (114 mg, 1 mmol) in dry dichloromethane (2 ml) was added TiCl₄ (0.06 ml, 0.5 mmol) at -78 °C, and the reaction mixture was stirred for 5 min. The resulted brown solution was poured into cold water and extracted with dichloromethane. The colourless extract was washed with water, dried (Na₂SO₄) and evaporated to dryness. Chromatography of the residue on silica gel with hexane-ethyl acetate (15:2) as the eluent afforded the 1,2-adduct 5a (53 mg, 54%) as an oil (Found: C, 43.8; H, 3.3. C₇H₆Cl₂O₂ requires C, 43.6; H, 3.1); $\nu_{max}(CHCl_3)/cm^{-1}$ 3319 (OH), 1784, 1579 (cyclobutenone) and 1642 (vinyl); $\delta_{\rm H}(200 \text{ MHz}, \text{CDCl}_3)$ 2.67 (2 H, d, J7.4, CH₂CH=CH₂), 2.75 (1 H, br s, OH), 5.27 (2 H, m, $CH_2CH=CH_2$) and 5.78 (1 H, m, $CH_2CH=CH_2$); $\delta_c(200)$ MHz, CDCl₃) 37.5, 93.2, 122.1, 130.2, 133.7, 170.7 and 187.7; m/z 196, 194, 192 (M^+ + 4, M^+ + 2, M^+ ; 1:6:9), 168, 166, 162 (M^+ + 4 - CO, M^+ + 2 - CO, M^+ - CO; 1:6:9) and 131, $129 (M^+ + 2 - CO-Cl, M^+ - CO-Cl; 1:3; base).$

Acknowledgements

We thank Kyowa Hakko Kogyo Co. Ltd. for a gift of 1 and elemental analyses.

References

- 1 R. West, Oxocarbons, Academic Press, New York, 1980.
- 2 A. H. Schmidt, Synthesis, 1980, 961; H. E. Sprenger and W. Ziegenbein, Angew. Chem., 1968, 80, 541; G. Maahs and P. Hegenberg, Angew. Chem., 1966, 78, 927.
- 3 L. P. Foland, O. H. W. Decker and H. W. Moore, J. Am. Chem. Soc., 1989, 111, 989 and ref. cited therein.
- 4 L. S. Liebeskind, R. W. Fengl, K. R. Wirtz and T. T. Shawe, J. Org. Chem., 1988, 53, 2482 and ref. cited therein.
- 5 L. Kraus, Tetrahedron Lett., 1985, 26, 1867.
- 6 H. J. Roth and H. Sporleder, Tetrahedron Lett., 1968, 6223.
- 7 L. A. Wendling, S. K. Koster, J. E. Murray and R. West, J. Org. Chem., 1977, 42, 1126.
- 8 E. W. Colvin, *Silicon in Organic Synthesis*, Butterworth, London, 1981; I. Fleming, J. Dunogues and R. Smithers, in *Organic Reactions*, ed. A. S. Kende, vol. 37, Wiley, New York, 1989, ch. 2.

Paper 1/03125B Received 24th June 1991 Accepted 24th June 1991